Дачники

Статьи о выращивании растений и уходе за животными

Виды кислотности почвы

В настоящее время на основе многочисленных исследований можно считать наиболее вероятным, что при взаимодействии кислых почв с растворами нейтральных солей в солевую вытяжку переходят ионы как водорода, так и алюминия. Соотношение между ними зависит от условий образования почв, состава поглощающего комплекса и других причин. Так, органические коллоиды почвы содержат преимущественно обменно-поглощенный водород, а обменная кислотность минеральной фракции почвы обусловливается и водородом, и переходящим в солевую вытяжку алюминием.
Обменная кислотность характерна для дерново-подзолистых почв и красноземов, а также для почв северной части черноземной зоны. В почвах, имеющих слабокислую реакцию водной вытяжки, обменная кислотность незначительна, а в щелочных вообще отсутствует. Обменная кислотность регулирует реакцию почвенного раствора. При взаимодействии твердой фазы почвы с катионами растворимых солей, образующихся в результате минерализации органических веществ, или с катионами вносимых в почву минеральных удобрений обменно-поглощенные ионы водорода и алюминия переходят в раствор и увеличивают актуальную кислотность, а если почвенный раствор нейтрализуется, то благодаря обменной кислотности он снова подкисляется.
Обменная кислотность приобретает особенно большое значение при внесении в почву больших количеств растворимых минеральных удобрений. Легко переходя в активную форму и подкисляя почвенный раствор, ионы водорода отрицательно влияют на развитие чувствительных к кислотности растений и почвенных микроорганизмов. Особенно токсичен для многих растений переходящий в раствор алюминий. Поэтому при внесении в кислые почвы извести необходимо добиваться нейтрализации не только актуальной, но и обменной кислотности.
Обменную кислотность выражают величиной рН КСl-вытяжки или в миллиграмм-эквивалентах на 100 г почвы. В величину обменной кислотности входит и актуальная кислотность, следовательно, обменная кислотность почвы всегда больше, чем актуальная, а рН солевой вытяжки ниже, чем рН водной вытяжки, если почва обладает обменной кислотностью.

Что такое кислотность почвы

Кислотность почвы (обозначается pH) зависит от наличия в ней ионов водорода, то есть состав химических элементов влияет на этот показатель. От кислотности почвы зависит проявление свойств кислот, которые попадают, образуются и преобразуются в почве, а, следовательно, от этого зависит и развитие самих растений.

Дякую, що завітали на сайт тов «ОДІН АГРО ТРЕЙД»

Якщо потрібне якісне Насіння Кукурудзи, Насіння Соняшника, Гербіциди…, Мікродобриво, Порада Агронома — Телефонуйте!

✆0676613009 ✆0662156358 Телеграм каналViber чат

✓Опт та роздріб ✓з ПДВ ✓Доступні ціни ✓Україна та Імпорт ✓Оригінали та генерики ✓Швидка доставка Відправимо Новою Поштою, Ін Тайм по Україні.

Кислотность выражается в терминах pH – показатель (т.е. десятичная степень) обратной величины концентрации водородных ионов (H+), в единицах от 0 до 14. Значение pH 7.0 означает нейтральную реакцию, выше – щелочную, ниже – кислую.

Сравнительная таблица pH

pH почвенная реакция обычные вещества
3 очень сильная кислотность лимонный сок
4 сильная кислотность апельсиновый сок
5 умеренная кислотность
6 слабая кислотность молоко
7 нейтральная чистая вода
8 слабая щелочность морская вода
9 умеренная щелочность мыльный раствор
10 сильная щелочность
11 очень сильная щелочность

Катионный обмен почвы

Непрерывное образование водородных ионов H+ происходит при растворении в почвенной воде углекислого газа (CO2) т.е. образования угольной кислоты. Углекислый газ выделяется корнями живых растений при дыхании, а также при распаде органики (органических удобрений). H+ могут вытеснять в почвенный раствор минеральные катионы, более того, ионы кальция, магния, калия и натрия, находятся в постоянном движении между почвенными частицами, почвенным раствором и корнями растений. Восполнение кальция, магния, калия и натрия происходит за счет распада минеральных почвенных частиц и внесения органических и минеральных удобрений. Высокий уровень катионного обмена характерен для глинистых и органических почв, низкий – для песчаных, т.е. связан с плодородием почв.

Виды кислотности.

Кислотность почвы обусловлена наличием в ней органических и минеральных кислот и коллоидов, обладающих кислотными свойствами. Различают актуальную (активную) и потенциальную (скрытую) виды кислотности.

Актуальная кислотность обусловлена наличием ионов Н+ и активностью водорода (протонов) в почвенном растворе. Измеряется она величиной рН водной вытяжки или водной суспензии (рНН2О) при соотношении почва — вода 1 : 2,5. В разных почвах показатель актуальной кислотности колеблется от 3 до 7.

Потенциальная кислотность обусловлена (в основном) наличием ионов водорода и алюминия в поглощённом состоянии в составе ППК. Она подразделяется на обменную и гидролитическую.

Обменная кислотность обусловлена количеством ионов водорода и алюминия, находящихся в обменном состоянии в составе ППК, которые извлекаются из почвы раствором нейтральной соли. Обычно для определения обменной кислотности почв используют 1н. раствор КСl (рН около 6).

Измеряется обменная кислотность величиной рН солевой вытяжки (рНКСl). При взаимодействии почвы с раствором КСl в результате обмена калия на водород в растворе появляется соляная кислота, а при обмене на алюминий — хлорид алюминия. Хлорид алюминия — это соль слабого основания и сильной кислоты, которая при взаимодействии с водой образует гидроксид алюминия и соляную кислоту:

Образующуюся в растворе соляную кислоту можно оттитровывать щёлочью и выражать кислотность в мг-экв/100 г или измерять рН солевой вытяжки. Показатель рНКСl колеблется в разных почвах от 2,5 до 6,5. В почвах, насыщенных основаниями, обменная кислотность не определяется.

Гидролитическая кислотность (Нг) обусловлена количеством ионов водорода и алюминия, находящихся в обменном (частично в необменном) состоянии в ППК, которые извлекаются из ППК раствором гидролитически щелочной соли сильного основания и слабой кислоты (обычно используется 1н. раствор ацетата натрия CH3COONa с рН 8,2). При взаимодействии щелочного раствора ацетата натрия с ППК происходит более полное вытеснение ионов водорода и алюминия натрием, чем при определении обменной кислотности с нейтральной солью, а в растворе образуется уксусная кислота, которая оттитровывается щёлочью. Количество образующейся уксусной кислоты, определяемое титрованием или потенциометрически, характеризует гидролитическую кислотность почв, которая выражается в мг-экв/100 г абсолютно сухой почвы.

Гидролитическая кислотность является суммарной, учитывающей обменную и актуальную. Показатели гидролитической кислотности используются в расчётах дозы извести, необходимой для нейтрализации кислотности освоенных почв.
Показатели состояния ППК почв, ненасыщенных основаниями. В состав поглощенных катионов почв, ненасыщенных основаниями, входят преимущественно катионы Са2+, Mg2+, Н+ и Аl3+. Сумма катионов кальция и магния характеризуется показателем S, который называется суммой поглощённых оснований и выражается в мг-экв/100 г. Сумма поглощённых катионов водорода и алюминия характеризуется показателем гидролитической кислотности Нг, которая также выражается в мг-экв/100 г. Общее количество поглощённых катионов ЕКО можно определить как S + Нг (аналитически ЕКО можно определить и отдельно специальным методом). Для характеристики доли участия катионов кальция и магния в составе катионов используется показатель степени насыщенности основаниями — V, который выражается в % к ЕКО.

Типы почв по кислотности

Для каждой культуры существует оптимальное значение кислотности почвы, при котором она развивается наилучшим образом, поэтому «pH» (кислотно-щелочной баланс) является одним из наиболее важных показателей качества плодородия земли.Кислотность почвы характеризуется величиной рН (водородный показатель).
Нейтральная реакция почвы соответствует рН7. Если рН выше 7, то реакция почвы щелочная, ниже — кислая.

При этом кислые почвы классифицируются следующим образом:

  • очень кислые почвы — рН 3,8 – 4,0,
  • сильнокислые почвы — рН 4,1 – 4,5,
  • среднекислые почвы — рН 4,6 – 5,0,
  • слабокислые почвы — рН 5,1 – 5,5,
  • близкие к нейтральной почвы — рН 5,6 – 6,9.

    Уменьшение pH на каждую единицу означает увеличение кислотности почвы в 10 раз.
    Определить кислотность почвы лучше в агрохимической лаборатории измерением рН с помощью прибора — рН-метра.

Причины изменения кислотности почвы

Химический состав материала, из которого формируется почва, – определяющий фактор ее кислотности. Например, почвы, сформированные на известковых сланцах или известняке, имеют высокое изначальное значение рН. Для того чтобы они стали кислыми, нужно больше времени, чем для тех, которые образовались на гранитах и песчанике. Кроме того, на кислотно-щелочной баланс (рН) почвы влияет геологический возраст ландшафта – время, в течение которого из исходного материала формировалась почва. Чем длиннее период воздействия погодных условий и чем интенсивнее этот процесс, тем больше будет удалено из почвы исходного материала и, следовательно, будет ниже рН. Там, где годовой уровень осадков превышает годовую норму испарения и влага накапливается в почве, существует высокий потенциал выщелачивания растворимых солей и основных минералов вниз по профилю почвы, за пределы корневой зоны. Постепенно почва становится более кислой. Выщелачивание в процессе орошения может также стать причиной повышения кислотности почвы, в зависимости от интенсивности применения воды и ее щелочного баланса (рН).

Предостережение
При внесении большого количества одного катиона, другие могут быть вытеснены в почвенный раствор, и вымыты в глубокие слои почвы. Такое может происходить при внесении большого количества несбалансированного минерального удобрения. Особенно это опасно на легких песчаных почвах, где мало мельчайших (коллоидных) частиц, поэтому дозы минеральных удобрений там снижают, разбивают на несколько внесений.

Аммонийный азот (NH+4), внесенный в почву или полученный в результате разложения пожнивных остатков и органического вещества почвенными бактериями, превращается в нитрат азот (соль азотной кислоты N03+). Это преобразование аммония в нитрат азота происходит благодаря микроорганизмам. В результате такой реакции высвобождается два иона водорода Н+, что приводит к повышению кислотности почвы. Кроме того, ионы аммония, смешанные в концентрированной форме с поверхностным слоем почвы, могут быть замещены другими основными ионами, такими как кальций и калий, которые впоследствии постепенно опускаются вниз по профилю почвы в процессе выщелачивания. В течение последних нескольких десятилетий этот процесс считается причиной увеличения кислотности почвы в тех местах, где почвы изначально были нейтральными или слегка щелочными.

Азотные удобрения начали активно использоваться для выращивания пшеницы и других культурных растений с 1950 годов. С появлением в 1960 годах новых высокоурожайных карликовых сортов пшеницы, которые имеют свойство положительно реагировать на применение высоких доз азотных удобрений, то есть без угрозы полегания стеблей, интенсивность использования азотных удобрений увеличилась еще больше.

Вынос с урожаем кальция, калия и магния также в некоторой степени влияет на подкисление почвы. Стебли и листья содержат в 3-4 раза больше основных минералов, чем семена. Использование растений в качестве фуража или удаление соломы с поля в течение многих лет, в свою очередь, приводит к еще большему удалению минералов с поля по сравнению с вариантом, когда убираются только семена.

Еще одна причина увеличения кислотности почвы – разложение органического материала, особенно в очень влажных почвах. Если разложение происходит при отсутствии достаточного количества кислорода, освобождаются ионы Н+, много органических кислот и большой объем углекислого газа (С02). Углекислый газ реагирует с водой, в результате чего образуется угольная кислота. Если осуществляется дренаж почвы и восстанавливается поступление в почву кислорода, много кислоты удаляется из почвы с помощью микроорганизмов или в результате других химичес­ких процессов. Вклад в окисление почвы со стороны разложения органической материи будет небольшим. Для незначительных изменений, которые наступают в результате этого процесса, понадобится много лет.

Влияние кислотности почвы на физическое состояние и продуктивность растений

На примере озимой пшеницы можно видеть, что урожай начинает уменьшаться с понижением рН почвы до 5,5-6. Уровень снижения урожая при повышении кислотности почвы зависит от сорта пшеницы, типа почвы и погодных условий в данном регионе. Прогрессирующее снижение урожая с понижением значения рН происходит не из-за более высокой концентрации ионов водорода в более кислой почве. Прямое влияние кислотности со стороны высокой концентрации водорода на рост пшеницы наблюдается только при значении рН ниже 3.

Причиной снижения продуктивности пшеницы с повышением кислотности почвы является изменение растворимости многих ионов, содержащих питательные элементы.

Растворимость одних ионов повышается настолько, что они становятся токсичными для пшеницы. Другие же ионы, наоборот, становятся до такой степени нерастворимыми, что растение испытывает недостаток в них. Высокая концентрация алюминия или марганца в нейтральных почвах не проявляют токсичности, но приводит к резкому снижению урожайности на кислых почвах. Алюминий не играет существенной роли в росте пшеницы, а вот марганец, медь и цинк существенно влияют на этот процесс.

Низкое значение рН может также привести к тому, что медь, цинк и бор станут токсичными. При этом высокая концентрация этих ионов может стать причиной проявления на растениях симптомов дефицита питательных веществ. Высокая концентрация растворимого алюминия и марганца может быть помехой в поглощении, транспортировке или использовании растением некоторых питательных веществ, а именно кальция, калия, фосфора, магния и молибдена. Это приводит к дефициту в почве этих элементов, хотя при других условиях этого количества питательных элементов было бы достаточно для пшеницы. Дефицит фосфора является существенным фактором на кислых почвах, поскольку он связывается с железом и алюминием в нерастворимые соединения. Дефицит доступного фосфора может наблюдаться, если значение рН находится у другого края шкалы рН, то есть в щелочных почвах, в которых фосфор также образует малорастворимые соединения. Примером в данном случае может служить кальциевый фосфат.

Чрезмерный высокий (выше 9) или низкий (ниже 4) pH почвы токсичен для корней растений. В пределах этих значений pH определяет поведение отдельных питательных веществ, осаждение их или превращение в неусваиваемые растениями формы.

В кислых почвах (pH 4.0-5.5) железо, аллюминий и марганец находятся в формах доступных растениям, а их концентрация достигает токсического уровня. При этом затруднено поступление в растения фосфора, калия, серы, кальция, магния, молибдена. На кислой почве может наблюдаться повышенный выпад растений без внешних причин – вымочка, гибель от мороза, развитие болезней и вредителей.

Напротив, в щелочных (pH 7.5-8.5) железо, марганец, фосфор, медь, цинк, бор и большинства микроэлементов становятся менее доступными растениям.
Оптимальным считается pH 6.5 – слабокислая реакция почвы. Это не ведет к недостатку фосфора и микроэлементов, большинство основных питательных веществ доступны растениям, т.е. находится в почвенном растворе. Такая почвенная реакция благоприятна для развития полезных почвенных микроорганизмов, обогащающих почву азотом.

Хотя отдельные виды растений приспособились к существованию в кислой или наоборот в щелочной среде, однако большинство растений хорошо развиваются при нейтральной или слабокислой реакции почвы (диапазон pH 6.0-7.0).

Влияние кислотности почвы на растения

Как правило, повышенная кислотность почвы угнетает рост и развитие растений. Происходит это по причине того, что в кислых грунтах преобладает содержание растворимого алюминия и его солей, а также марганца, которые связывают щелочные минералы: кальций, магний, калий, селен и прочие, препятствуя их нормальному усвоению растениями. Кроме того, в кислой почве быстрее и активнее размножаются болезнетворные бактерии, микроорганизмы и вредители, а удобрения, вносимые в грунт, не разлагаются. Это приводит дисбалансу в почве.

При этом следует помнить, что каждое растение, будь то садовое, огородное или комнатное, предпочитает определенную кислотность грунта. Одним культурам подходит слабо – кислая почва, другие лучше произрастают в нейтральной, третьи отдают предпочтение щелочному или слабо – щелочному грунту.

В зависимости от предпочтений растения подразделяются на следующие категории:

Растения, требующие почв, близких к нейтральной или слабощелочной реакции

По отношению к кислотности почвы овощные растения разделяются на следующие группы.
Растения, требующие почв, близких к нейтральной или слабощелочной реакции (рН6,6-7,0): капуста белокочанная и почти все разновидности капусты, лук, пастернак, перец, свекла столовая, сельдерей, спаржа.

Растения, требующие почв слабокислой реакции

Растения, требующие почв умеренной кислотности

Почему важно, чтобы кислотность почвы соответствовала выращиваемой культуре?

Дело в том, что при несоответствии кислотности грунта у растений нарушается нормальный процесс питания и некоторые полезные вещества и соединения не усваиваются или усваиваются крайне плохо, в результате чего они растут медленно и болеют. Кроме того низкое значение «рН» может привести к тому, что многие микроэлементы, такие, как медь, цинк и бор могут оказаться для растений даже токсичными.

Как проверить кислотность почвы?

При получении земельного участка во временное или постоянное владение необходимо провести анализы почвы и определить уровень ее плодородия, закисления, необходимости обработки для снижения кислотности, щелочности и т.д. Наиболее точные данные можно получить, сдав образцы почвы на химический анализ. Если нет такой возможности, примерно можно определить уровень кислотности домашними способами:

  • используя лакмусовые индикаторные полоски бумаги;
  • по сорнякам, растущим на участке;
  • раствором столового уксуса;
  • отварами листьев некоторых ягодных и садовых культур;
  • прибором (рН-метр или почвенный щуп).

Определение кислотности почвы индикаторной бумагой

По диагонали участка выкопать на штык лопаты ямки с гладкой стенкой. По всей глубине прямой стенки снять тонкий слой грунта, перемешать на пленке и отобрать образец в 15-20 г. Образцы отдельно размешать в стакане воды, дать отстояться и опустить индикаторную бумагу в воду. Вместе с полосками индикатора на упаковке имеется шкала цветовых изменений с цифровыми значениями.

При изменении цвета полоски (цветовая гамма может быть разных оттенков):

  • в красный цвет – почва кислая;
  • оранжевый – среднекислая;
  • желтый – слабокислая;
  • слабо зеленоватый – нейтральная;
  • все оттенки синего – щелочная.

Для более точного определения кислотности почвы сравните цветовое показание с цифровым (на упаковке), указывающим цифровое значение рН.

Вытяжка готовится в виде суспензии (из расчета одна часть почвы к пяти частям води). Для производства данного опыта нет необходимости иметь большой объем суспензии, достаточно подготовить небольшую пробирку, поместить в нее около двух грамм грунта и затем содержимое залить десятью миллилитрами воды, после чего пробирку следует встряхнуть и подождать пока отстоится осадок. Теперь можно опускать в раствор лакмусовую бумагу и смотреть, какой оттенок она приобретет.

Определение кислотности почвы по сорным растениям

На кислых почвах растут:

  • щавель конский;
  • подорожник большой и ланцетный;
  • хвощ полевой;
  • мята обыкновенная;
  • иван-да-марья;
  • мокрица;
  • вереск;
  • мхи;
  • осока;
  • полевица тонкая;
  • горчица дикая;
  • лапчатка;
  • горец почечуйный;
  • люпин синий;
  • лютик ползучий.

На щелочных преобладают:

  • живокость;
  • дикий мак;
  • горчица полевая;
  • чистец пушистый;
  • фасоль.

На нейтральной или слабокислой почве, пригодной для выращивания большинства огородно-садовых культур растут:

  • мать-и-мачеха;
  • полевой вьюнок;
  • редька полевая;
  • василек полевой;
  • ромашка;
  • клевер луговой и горный;
  • овсяница луговая;
  • пырей;
  • лебеда;
  • крапива жгучая;
  • бодяк огородный;
  • мыльнянка лекарственная;
  • смолевка поникшая;
  • чина луговая;
  • синеголовник плосколистный.

Определение кислотности почвы подручными средствами

Столовый уксус

Данное определение довольно приблизительно, но покажет, в каком направлении вести дальнейшие работы на участке. По диагонали участка набирают в отдельные емкости по горсти земли. Отобранные образцы грунта насыпают на пленку и капают несколько капель столового уксуса (6 или 9%). Если слышно шипение или грунт «вскипает», появляются пузырьки – значит почва нейтральная и пригодна для использования без применения раскисления.

Чай из листьев вишни или смородины

Несколько листочков заливают кипятком, дают настояться до 15-20 минут. Добавляют комок земли. Если раствор стал синеватым – почва кислая, изменил цвет на зеленый – может быть нейтральной или щелочной.

Виноградный сок (не вино)

Этот анализ можно сделать ранней весной или глубокой осенью, когда нет зеленых растений. В стакан с соком бросают комок земли. Если сок изменил цвет и выделяются пузырьки – почва нейтральной кислотности.

Сода

В небольшой емкости готовят кашицу из грунта и воды. Сверху присаливают обильно пищевой содой. Появилось шипение – грунт закисленный. Степень кислотности необходимо определить более точно для принятия необходимых мер.

Определение кислотности почвы специальными приборами

Наиболее точный результат в домашних условиях можно получить, используя приборы-анализаторы: рН-метры, кислотомеры, почвенные щупы. Пользоваться ими очень легко. Достаточно воткнуть щуп острым концом в почву и через несколько минут на шкале высветится показатель уровня кислотности почвы.

Способы улучшения почв

Нейтрализация кислой почвы

Для нейтрализации кислых почв применяют: гашеную известь, доломитовую муку, известковую муку с медленным действием, известняк доломитизированный с еще более медленным действием, цементную пыль, известковый туф, мел молотый.

Применяют и природную известь, месторождения которой есть во многих местах, обычно там, где выходят наружу родники. Природная или пресноводная, известь получила такое название благодаря своему происхождению из-под источников и по готовности к применению без промышленной доработки. Выглядит она как пылеватый мелкозернистый песок от белого и светло-желтого до темно-серого и темно-коричневого цвета. Содержание карбонатов кальция и магния в ней достигает 97%. Никаких вредных примесей природная известь не содержит.
Чтобы облагородить сильнокислую почву, надо раз в 6 лет вносить до 50 кг природной извести на каждую сотку.
Нормы внесения извести при известковании почвы зависят от кислотности и механического состава почвы.

Предостережение
Хотя известь не обжигает растения и действует медленно, особенно молотый известняк, нельзя вносить известь бесконтрольно. Избыток извести препятствует нормальному росту растений. Избыток извести препятствует поглощению растениями других необходимых питательных элементов. Лучше немного недоизвестковать почву, чем переизвестковать.

Раскисление почв известкованием

Известь лучше вносить (один раз в 5-8 лет) осенью под перекопку. При одновременном внесении извести и органических удобрений сначала на участке равномерно разбрасывают известь, а поверх нее — органические удобрения и сразу же перекапывают. Известь оказывает благотворное действие на состав почвы в течение 10 лет.

Известь вытесняет из почвенного поглощающего слоя водород и алюминий и заменяет их кальцием и магнием. Это ведет к улучшению структуры почвы и ее водно-химическому режиму. Уменьшается кислотность, а токсичные формы алюминия и магния переходят в нерастворимое состояние, становятся безвредными для растений. Почва способна уже полностью удовлетворять потребности растений в кальции. Известь не только снижает кислотность почвы, но и усиливает питание растений, увеличивая скорость минерализации органических удобрений и перегноя, разрыхляет почву.

Отличным средством для улучшения кислой почвы является выращивание растений – сидератов, которые способствуют повышению уровня «рН». К таким культурам относятся люпин, бобовые, сераделла, клевер, донник, белая горчица, рожь, гречиха, вика, фацелия и прочие.

Нельзя обойти вниманием и такой побочный продукт свеклосахарного производства, как дефекат или дефекационную грязь (фильтрационный осадок), который используется как удобрение, при этом значительно улучшая кислые почвы. Поскольку растения на кислых грунтах испытывают кальциевый голод, сахарная свекла компенсирует его недостаток, насыщая землю и нейтрализуя повышенную кислотность.

Нейтрализущая способность

Если принять за 100% нейтрализущую способность карбоната кальция (CaCO3) , то:
• карбонат кальция – CaCO3 – 100%,
• карбонат магния – MgCO3 – 119%,
• гидроокись кальция (гашеная известь – пушенка) – Ca(OH)2 – 135%,
• окись кальция (негашеная известь) – CaO – 178%,
• окись магния – MgO – 250%,
Поэтому нейтрализущая способность
• гашеной извести (пушенки) – 135%,
• доломита несколько выше 100%,
• молотого известняка – 75-95% (так как это не чистый карбонат кальция, а с разными примесями),
• мергеля, ракушечника – 90-95%,
• древесной золы – 30-70%

Скорость взаимодействия с почвой

Качество известковых удобрений определяется их чистотой и тонкостью помола. Скорость реакции известкового материала с почвой определяется величиной частиц, типом материала и тщательностью, с которой он перемешан с землей. Чем тоньше размер частиц, тем больше общая площадь их поверхности и тем быстрее будет реакция с почвой. Крупинки извести более 3 мм практически бесполезны.

Гашеная известь – пушенка вступает в реакцию с почвой, приблизительно в 100 раз быстрее известняка (карбоната кальция). Такая же скорость реакции у древесной золы.

Что делать, если провести известкование не получается?

Кальциевая селитра – единственное физиологически щелочное удобрение с эффектом известкования.

Для получения урожая в почву вносят минеральные удобрения, но практически все они физиологически кислые, поэтому использование таких удобрений на кислых землях приводит не только к нерациональному их употреблению, но и к отрицательному влиянию на почвенное плодородие и на растения.

Внесение аммиачной селитры или сульфата аммония на кислых почвах приводит к тому, что аммоний вытесняет обменный кальций из почвенных коллоидов, и он теряется с водой. На практике внесение в почву 100 кг аммиачной селитры влечет за собой потерю кальция эквивалентную 100 кг карбоната кальция.

При нормальном уровне кальциевого питания усвоение азота возрастает в 2-3 раза. В растениях, хорошо обеспеченных кальцием, усиливается синтез ауксина, повышается устойчивость растений к стрессовому воздействию пестицидов.

Кальций благоприятно влияет на рост корней, играет большую роль в снижении токсичного действия других элементов, в том числе и ионов аммония; он особенно необходим на кислых почвах, где алюминий и марганец являются обменными катионами и при больших концентрациях становятся токсичными для большинства с\х культур.

Единица азота Кальциевой селитры на кислых почвах работает в 3 раза эффективнее единицы азота других удобрений.

Уникальная комбинация нитратного азота и полностью водорастворимого кальция являет собой значительные агрохимические преимущества и свойства, которых нет у других удобрений. Это делает Кальциевую селитру одним из наиболее ценных минеральных удобрений, в силу получения двойного эффекта от его внесения – питание и известкование.

Проведение подкормок гранулированной Кальциевой селитрой сахарной свеклы, картофеля, овощных, плодовых, ягодных и других культур на кислых почвах – высокорентабельный и экономически оправданный агроприем.

Кальциевая селитра (Нитрат кальция; Кальций азотнокислый) – Состав:

Всего азота (N) – 15,5%

СаО водорастворимый – 26,5%

Инструкция по применению гранулированной Кальциевой селитры для внесения в почву:

Все сельскохозяйственные и декоративные культуры 100 – 500 кг/га

Преднамеренное окисление почвы

Улучшить показатель «рН» щелочных почв можно с помощью мелиорационных мероприятий и внесением в почву сернокислого кальция, который в народе именуют гипсом. При внесении обычного гипса, кальций вытесняет поглощенный натрий, в результате чего улучшается структура солонцового горизонта, земля начинает лучше пропускать влагу, вследствие чего, из грунта постепенно вымываются избыточные соли.

Эффект внесения гипса не ограничивается только увеличением количества серы в почве, поскольку он в первую очередь, улучшает структуру и качество грунта, способствуя повышению содержания в нем связанного натрия.

В качестве отличного окислителя почвы применяется и гранулированная сера, которую следует вносить постепенно (около двадцати килограмм на гектар площади), с промежутком в три, и более месяцев. Но следует помнить, что результат от внесения серы можно ожидать лишь через год или даже по истечении нескольких лет.

В качестве улучшения щелочной почвы рекомендуется производить и глубокую вспашку земли, но без мелиорирующих добавок она, как правило, менее эффективна.

Для нейтрализации щелочности, обусловленной присутствием в почве карбонатов и гидрокарбонатов натрия, следует применять слабые растворы различных кислот, чаще всего серной. Аналогичное действие оказывают кислые соли, которые вследствие реакции гидролиза образуют кислоты (например, в качестве компонента для мелиорации щелочных почв часто применяется железный купорос).

На практике для улучшения щелочности грунта аграрии иногда используют отходы фосфородобывающей промышленности, то есть фосфогипс, который помимо сернокислого кальция содержит примеси серной кислоты и фтора. Но в последнее время ученые забили тревогу, поскольку фосфогипс, хоть и нейтрализует повышенную щелочь, но при этом загрязняет почву фтором. Растения могут по-разному реагировать на данное вещество (например, доказано, что повышенное содержание фтора в растениях, предназначенных на корм животных, может быть достаточно токсичным).

При слабощелочных почвах, структуру плодородного горизонта улучшают при помощи вспашки с внесением увеличенных доз органических удобрений, которые подкисляют грунт. Лучшим из них является перегнивший навоз, в который следует добавить обычный суперфосфат (около двадцати килограмм на тонну навоза) или фосфорную муку (около пятидесяти килограмм на тонну перегноя). Для снижения щелочности грунта в почву можно вносить также торфяной мох или болотный торф. Неплохо подкисляет почву хвоя сосновых деревьев, которую часто применяют и в качестве основы для мульчирования грунта. Хороший результат для нормализации щелочности дает компост из перегнивших листьев дуба.

В засушливых районах с небольшим количеством ежемесячных осадков требуется производить дополнительное орошение земли.

Значительно улучшают щелочной грунт посевы растений – сидератов, которые являются превосходным источником биологического азота. В качестве сидеральных культур используют такие культуры как люпин (содержит большое количество белковых веществ) и другие растения семейства бобовых, а также сераделлу, клевер, донник, белую горчицу, рожь и гречиху.

При использовании минеральных удобрений, следует выбирать те, которые подкисляют грунт, но при этом не содержат хлора (например, сульфат аммония).

Источники

Кислотность почвы обусловлена наличием в ней органических и минеральных кислот и коллоидов, обладающих кислотными свойствами. Различают актуальную (активную) и потенциальную (скрытую) виды кислотности.
Актуальная кислотность обусловлена наличием ионов Н+ и активностью водорода (протонов) в почвенном растворе. Измеряется она величиной рН водной вытяжки или водной суспензии (рНН2О) при соотношении почва — вода 1 : 2,5. В разных почвах показатель актуальной кислотности колеблется от 3 до 7.
Потенциальная кислотность обусловлена (в основном) наличием ионов водорода и алюминия в поглощённом состоянии в составе ППК. Она подразделяется на обменную и гидролитическую.
Обменная кислотность обусловлена количеством ионов водорода и алюминия, находящихся в обменном состоянии в составе ППК, которые извлекаются из почвы раствором нейтральной соли. Обычно для определения обменной кислотности почв используют 1н. раствор КСl (рН около 6).
Измеряется обменная кислотность величиной рН солевой вытяжки (рНКСl). При взаимодействии почвы с раствором КСl в результате обмена калия на водород в растворе появляется соляная кислота, а при обмене на алюминий — хлорид алюминия. Хлорид алюминия — это соль слабого основания и сильной кислоты, которая при взаимодействии с водой образует гидроксид алюминия и соляную кислоту:


Образующуюся в растворе соляную кислоту можно оттитровывать щёлочью и выражать кислотность в мг-экв/100 г или измерять рН солевой вытяжки. Показатель рНКСl колеблется в разных почвах от 2,5 до 6,5. В почвах, насыщенных основаниями, обменная кислотность не определяется.
Гидролитическая кислотность (Нг) обусловлена количеством ионов водорода и алюминия, находящихся в обменном (частично в необменном) состоянии в ППК, которые извлекаются из ППК раствором гидролитически щелочной соли сильного основания и слабой кислоты (обычно используется 1н. раствор ацетата натрия CH3COONa с рН 8,2). При взаимодействии щелочного раствора ацетата натрия с ППК происходит более полное вытеснение ионов водорода и алюминия натрием, чем при определении обменной кислотности с нейтральной солью, а в растворе образуется уксусная кислота, которая оттитровывается щёлочью. Количество образующейся уксусной кислоты, определяемое титрованием или потенциометрически, характеризует гидролитическую кислотность почв, которая выражается в мг-экв/100 г абсолютно сухой почвы.
Гидролитическая кислотность является суммарной, учитывающей обменную и актуальную. Показатели гидролитической кислотности используются в расчётах дозы извести, необходимой для нейтрализации кислотности освоенных почв.
Показатели состояния ППК почв, ненасыщенных основаниями. В состав поглощенных катионов почв, ненасыщенных основаниями, входят преимущественно катионы Са2+, Mg2+, Н+ и Аl3+. Сумма катионов кальция и магния характеризуется показателем S, который называется суммой поглощённых оснований и выражается в мг-экв/100 г. Сумма поглощённых катионов водорода и алюминия характеризуется показателем гидролитической кислотности Нг, которая также выражается в мг-экв/100 г. Общее количество поглощённых катионов ЕКО можно определить как S + Нг (аналитически ЕКО можно определить и отдельно специальным методом). Для характеристики доли участия катионов кальция и магния в составе катионов используется показатель степени насыщенности основаниями — V, который выражается в % к ЕКО.

Экология СПРАВОЧНИК

Гидролитическая деструкция целлюлозы рассмотрена в . С химической точки зрения гидролиз целлюлозы аналогичен гидролизу дисахаридов . В присутствии кислотных катализаторов происходит быстрое образование промежуточного комплекса между глюкозидным кислородом и протоном, приводящее к медленному, определяющему скорость реакции расщеплению глюко-зидной связи у С(1) . При избытке воды реакция, как правило, подчиняется уравнению первого порядка; тем не менее изучение начальных стадий реакции гидролиза показало, что во многих случаях они могут быть описаны уравнением нулевого порядка.

Кислотность, обнаруживаемая при обработке почвы раствором CH3COONa, значительно больше, чем обменная. В этом случае определяется общая кислотность почвы, включающая актуальную и всю потенциальную кислотность, как обменную, так и «собственно гидролитическую» (которая не вытесняется КС1, но вытесняется 1 н. раствором CH3COONa). Следовательно, под гидролитической кислотностью почвы подразумевается кислотность, обнаруживаемая в растворе после обработки почвы уксуснокислым натрием и включающая все содержащиеся в почве ионы водорода, не только легко подвижные (обменные), но и менее подвижные, способные к замене на основания лишь при щелочной реакции.

Гидролитическая кислотность в почвах появляется при самом начале обеднения их основаниями. При дальнейшей потере оснований появляется также обменная и актуальная кислотность.

Кислотность воды обусловлена присутствием в ней свободной угольной кислоты, а также других кислот или гидролитически кислых солей. Перед сбросом кислых стоков в водоем кислотность должна быть нейтрализована.

Гидролитическая кислотность — это та кислотность, которая обнаруживается в почве при обработке ее гидролитически щелочными солями, например уксуснокислым натрием: Н + CH3COONa iü Na + CHsCOOH.

Кислотность, вытесняемая раствором гидролитически-щелочной солью, называется гидролитической кислотностью. Гидролитическая кислотность обозначается буквой Н.

Кислотность почв — это способность почвы подкислять почвенный раствор или растворы солей вследствие наличия в составе почвы кислот, а также обменных ионов водорода и катионов, образующих при их вытеснении гидролитически кислые соли (преимущественно А13+). Различают а к-туальную кислотность, определяемую значением pH почвенного раствора или водной вытяжки, и п о-тенциальную кислотность, носителем которой являются ионы Н+ и А13+, находящиеся в твердой фазе почвы в обменно-поглощенном состоянии, но подкисляющие почвенный раствор в результате обменных реакций при увеличении в нем концентрации электролитов (например, при внесении в почву удобрений).

Гидролитическая кислотность выражается обычно в тоннах углекислой извести на гектар. Эта величина служит показателем при установлении дозы внесения извести в почву. Дозы извести выражают также в долях гидролитической кислотности (’/4, !/2 и т. д.).

Несмотря на равную величину гидролитической кислотности, первая почва с меньшей степенью насыщенности основаниями будет относительно более кислой. Такая почва сильнее нуждается в устранении кислотности (например, путем известкования), чем вторая почва, у которой кислотность составляет лишь небольшую часть всей емкости поглощения. Третья почва имеет такую же степень насыщенности основаниями (50%), как и первая почва, но емкость поглощения и гидролитическая кислотность у них различные. Несмотря на одинаковую степень насыщенности, третья почва с более высокой гидролитической кислотностью требует больше извести, чтобы реакция этой почвы сравнялась с реакцией первой почвы.

Чем больше гидролитическая кислотность почвы, тем больше будет буферное действие против изменения реакции в сторону подщелачивания, но против подкисления почвы, слабо насыщенные основаниями, мало буфер-ны, так как образующиеся в них кислоты не будут полностью нейтрализоваться основаниями.

Определение гидролитической кислотности почвы.

Определение гидролитической кислотности по методу Каппе-на в модификации ЦИНАО.

Более точно величину гидролитической кислотности можно получить методом кривых титрования, определяя количество щелочи, которое требуется прибавить в солевую почвенную суспензию для доведения ее до определенного значения pH (например, pH 6).

Регулирующее влияние гидролитической кислотности на реакцию почвенного раствора сказывается главным образом тогда, когда реакция его приближается к нейтральной или слабощелочной. Вследствие того, что гидролитическая кислотность включает менее подвижную часть ионов водорода, она (при отсутствии обменной кислотности) не вредна для растений. Знание размеров ее очень важно при решении ряда практических вопросов применения удобрений (известкование, внесение фосфоритной муки).

При отсутствии данных по гидролитической кислотности для установления примерных доз извести можно пользоваться и показаниями обменной кислотности почв (табл. 17).

Таким образом, актуальная кислотность — это кислотность почвенного раствора, создаваемая углекислотой (Н2С03), водорастворимыми органическими кислотами и гидролитически кислыми солями. Она определяется измерением pH водной суспензии или водной вытяжки из почвы. Актуальная кислотность оказывает непосредственное влияние на развитие растений и почвенных микроорганизмов.

Известь в количестве 1/1 и 1/2 гидролитической кислотности устраняет обменную кислотность и вредное влияние активного алюминия. В таких дозах она сохраняет высокое действие в течение десяти и более лет.

Соотношение между обменной и гидролитической кислотностью может быть представлено следующей схемой (по Н. П. Ремезову).

Черноземы, за исключением южных, имеют гидролитическую кислотность, хотя обменной кислотности в них может и не быть. Если в почве есть обменная кислотность, то она входит как часть в кислотность гидролитическую. Выщелоченные черноземы, более обедненные основаниями, характеризуются как гидролитической, так и небольшой обменной кислотностью. Еще более обедненные основаниями дерново-подзолистые почвы имеют значительную гидролитическую кислотность и сильно выраженную обменную кислотность, а также актуальную кислотность.

Ее вносят на почвах с повышенной кислотностью под -предшественники льна. На хорошо окультуренных почвах дозы взвести не должны превышать 1/2—3/4 и на менее окультуренных почвах — 1/4—1/2 гидролитической кислотности. Сильнокислые суглинистые почвы получают примерно 1,5—2 т извести, песчаные и супесчаные — 1—1,5 т на 1 га.

Однако некоторые ученые полагали, что обменная кислотность обусловлена не водородом, а обменнопоглощенным алюминием, который при взаимодействии почвы с раствором нейтральной соли переходит в него и образует гидролитически кислую соль (А1С13). Образующаяся в этом случае кислота (НС1) является результатом гидролиза А1С13, то есть она не причина, а следствие обменной кислотности, обусловленной обменным алюминием.

Эти дозы извести приблизительно соответствуют 75% гидролитической кислотности почвы. Устанавливая дозу извести в конкретных условиях, кроме величины кислотности, учитывают особенности культур севооборота и механический состав почвы. Полная доза, рассчитанная по гидролитической кислотности, не для всех растений и не на всех почвах является оптимальной. Оптимальная доза соответствует или гидролитической кислотности, или составляет какую-то часть ее.

При компостировании торфа с известью устраняется его кислотность, он обогащается кальцием, а иногда и магнием. Количество извести при таком компостировании лучше всего устанавливать по 0,8 доли гидролитической кислотности торфа. Практически при влажности торфа 60 —70% известь составляет 1—3% веса торфа (чем он кислее, тем больше извести идет на компостирование).

На лугах известковые удобрения вносят поверхностно с заделкой бороной поздней осенью или ранней весной в дозе по 1/2—3/4 гидролитической кислотности. При коренном улучшении лугов применяют полную дозу извести под вспашку. Под влиянием извести уменьшается количество выносливых к кислотности злаковых трав и сорняков, а количество бобовых увеличивается, улучшается рост и развитие трав, в результате сильно повышается урожай и питательность сена. При поверхностном внесении известь действует сравнительно медленно и снижает «кислотность лишь в верхнем слое почвы. Внесенная под вспашку при коренном улучшении лугов, она действует значительно сильнее.

При известковании почв, если на этих почвах оно проводится впервые, нет необходимости добиваться полного устранения их кислотности, достаточно понизить ее до pH 5,6—5,8. Это уже создает благоприятную реакцию почвы для развития растений. Количество необходимой для этого извести рассчитывают по так называемой гидролитической кислотности» почвы. На практике потребность в извести дерново-подзолистых и серых лесных почв при содержании гумуса не более 3 % обычно определяют по pH солевой вытяжки из почвы с учетом механического ее состава. Дозы извести, установленные по этим свойствам почвы, приведены в таблице 164.

Как видно из рисунка 39, длительное, в течение 18 лет, применение натриевой селитры сильно снизило по сравнению с контролем и особенно с физиологически кислым сульфатом аммония гидролитическую кислотность почвы, повысило сумму поглощенных оснований в 1,7 раза, увеличило степень насыщенности почвы основаниями (на контроле — 24,7, на варианте с ШШ3 — 42,2 .

В результате наших исследований установлено, что систематическое внесение азотнокислого и сернокислого аммония, суперфосфата и хлористого калия, даже на выщелоченном черноземе, увеличило гидролитическую кислотность в слое 0—60 см с 2,8 до 5,6 мг-экв. на 100 г почвы.

При взаимодействии почвы с уксуснокислым натрием натрий более полно и менее обратимо вытесняет из поглощающего комплекса ионы водорода, чем хлористый калий. Происходит также нейтрализация актуальной кислотности почвы, обусловливаемой наличием водородных ионов в почвенном растворе. В итоге после воздействия уксуснокислого натрия на почву учитывается не только собственно гидролитическая кислотность, но также актуальная и обменная кислотности. Поэтому величина,- называемая условно гидролитической кислотностью, на самом деле представляет сумму всех форм кислотности почвы.

При проведении известкования очень важно установить оптимальную дозу извести в соответствии с особенностями почвы и возделываемых растении. Количество извести, необходимое для уменьшения повышенной кислотности пахотного слоя почвы до слабокислой реакции (pH водной вытяжки 6,2—6,5, солевой вытяжки 5,6—5,8), благоприятной для большинства культур и полезных микроорганизмов, называется полной, или нормальной, дозой. Она зависит от величины кислотности почвы. Более точно полную дозу извести можно определить по гидролитической кислотности. Для вычисления таким путем дозы извести (в тоннах CaCOs на 1 га) умножают величину гидролитической кислотности (Нг), выражаемую в мг-экв. на 100 г почвы, на коэффициент 1,5. Доза СаС03 = Нг1,5.

Мощность перегнойного горизонта у оподзоленных черноземов 50—70 см, а иногда и больше. Содержание перегноя в верхнем горизонте в зависимости от механического состава колеблется от 4 до 7 и более процентов, гидролитическая кислотность 5—6 м.-экв. на 100 г почвы, степень насыщенности основаниями 80—90%, реакция почвенного раствора слабокислая или близка к нейтральной (pH солевой вытяжки 5—6).

В севооборотах с большими площадями возделывания льна и картофеля дозы извести снижают. В хозяйствах, где возделывается много картофеля и льна, доза извести обычно не должна превышать дозы, соответствующей /г гидролитической кислотности; лучше применять известковые материалы, содержащие магний (табл. 16).

При дробном внесении извести общая прибавка урожая всех культур за ротацию севооборота бывает не ниже, чем при заделке полной или половинной дозы в один прием. В опыте ВИУА, проведенном на Центральной опытной станции на дерново-подзолистой тяжелосуглинистой почве (pH солевой вытяжки 4,15, гидролитическая кислотность 4,8 мг-экв. на 100 г), получены следующие суммарные прибавки урожая за 10 лет (1941—1950) в зерновых эквивалентах: от полной дозы (7,2 т), внесенной в один прием,— 60,1 ц, половинной дозы (3,6 т) в один прием —37,6 ц, от дробного внесения половинной дозы в три приема по 1,2 т — 38,2 ц на 1 га.

Содержание гумуса 7-12%. Сумма обменных оснований обычно составляет 30-45 мг-экв. Преобладает обменный кальций, обменный водород отсутствует или составляет не более ] 0% от суммы поглощенных оснований. Величина pH в гумусовом горизонте — около 6, глубже реакция среды нейтральная; в верхних горизонтах гидролитическая кислотность может достигать 7-10 мг-экв.

Для гумусового горизонта характерны выделения карбонатов в виде мицелия или прожилок. Легкие и среднесуглинистые типичные черноземы содержат 3,5—6% перегноя, тяжелосуглинистые и глинистые — 6—10% и более процентов. У типичных черноземов реакция почвенного раствора близка к нейтральной (pH солевой вытяжки 5,5—7,0); гидролитическая кислотность 0,5—4 м.-экв.; сумма поглощенных оснований в зависимости от механического состава и содержания перегноя колеблется в пределах от, 17 до 60 м.-экв. на 100 г почвы. Насыщенность основаниями в пахотном слое выше 90%, а в подпахотном — выше 95%.

В севооборотах с картофелем необходимо соблюдать осторожность при внесении извести в почву. Избыточное известкование вызывает заболевание картофеля паршой, снижение процента крахмала, иногда общее уменьшение урожая. Чтобы не допустить этих неблагоприятных явлений, известкование следует проводить небольшими дозами, не свыше половины гидролитической кислотности почвы. Известь лучше вносить непосредственно под картофель или даже после посадки его с заделкой боронованием, так как наиболее сильное действие она проявляет на третий-пя-тый год после внесения. При соблюдении этих предосторожностей урожай картофеля повышается без снижения качества клубней.

По данным полевых опытов, прибавки урожая при местном внесении малых доз извести в большинстве случаев составляют 40—60% прибавок, получаемых в первые годы от полной дозы извести, а иногда и приближаются к ним. Это, в частности, подтверждается полевым опытом с капустой, проведенным бывшим Московским домом агронома на дерново-подзолистой тяжелосуглинистой почве (pH солевой вытяжки 5,0, гидролитическая кислотность 3,5 мг-экв. на 100 г), данные которого указаны в таблице 40.

Содержание гумуса в оподзоленных черноземах колеблется в значительных пределах — от 4,0 до 17,6%. Относительно меньше гумуса в почвах, сформированных на элювии песчаников. Содержание азота в более гумусированных почвах доходит до 0,89%, а в менее гумусиро-ванных 0,47-0,63%. Сумма поглощенных оснований в более тяжелых по механическому составу почвах составляет 48,2-61,4 мг-экв, в более легких почвах — 43-44 мг-экв на 100 г почвы, обменная кислотность изменяется в пределах pH 4,7-6,6. Гидролитическая кислотность колеблется от 1,4 до 10 мг-экв на 100 г почвы. Степень насыщенности основаниями изменяется в пределах 80-90%. Содержание фосфора в этих почвах низкое и большей частью колеблется от 1,5 до 5,0 мг на 100г почвы (Усманов, 1962).

Виды кислотности почв

Реакция почвенного раствора (почвы) обусловлена соотношением ионов водорода (Н+) и гидроксида (ОН-), причем концентрацию первых обычно выражают символом рН, являющимся отрицательным логарифмом концентрации этих ионов (Н+).

Реакция почвы оказывает большое разностороннее влияние на усвоение питательных элементов, рост, развитие и урожайность растений, деятельность почвенных микроорганизмов, трансформацию разных форм питательных элементов удобрений и почвы, физические, химические, физико-химические и биологические свойства почв. Удобрения, и особенно мелиоранты, позволяют регулировать реакцию почв в желаемом для возделываемых культур направлении.

По реакции (рН) различают почвы:

В кислых почвах различают актуальную (активную) и потенциальную (пассивную) кислотность.

Актуальная кислотность обусловлена наличием и концентрацией ионов водорода в почвенном растворе (суспензии) при обработке почвы водой. Разложение органического вещества почвы и органических удобрений приводит к постоянному образованию органических и аминокислот, диоксида углерода и воды. Органические и аминокислоты являются продуктами корневых выделений растений и почвенных микроорганизмов, а при дыхании все живые организмы выделяют СО2. Диоксид углерода, взаимодействуя с водой, образует угольную кислоту. Угольная, органические и аминокислоты, да еще гидролитически кислые удобрения (NH4C1; (NH4)2 SO4) и азотная кислота, образующаяся в процессе нитрификации аммиачного азота удобрений и почвы, являются основными источниками ионов водорода почвенного раствора, обусловливающими актуальную кислотность почв.

Потенциальная кислотность обусловлена обменно-поглощенными ППК ионами водорода, алюминия, железа и марганца. В зависимости от способности к обменному вытеснению из ППК этих ионов другими потенциальную кислотность разделяют на обменную и гидролитическую.

Обменная кислотность обусловлена наличием в ППК тех ионов водорода, алюминия, железа и марганца, которые могут быть вытеснены в раствор катионами нейтральных солей, в том числе и удобрений (КС1, KNO3, K2SO4 и др.). Схематически это можно представить в следующем виде:

В слабокислых почвах обменная кислотность незначительная, а в щелочных — вообще отсутствует. Обменная кислотность кислых почв легко переходит в актуальную при взаимодействии твердой фазы почвы с водорастворимыми солями удобрений, мелиорантов и жидкой фазы почвы, что усиливает отрицательное влияние на чувствительные к кислотности растения и микроорганизмы. Особенно токсичны для многих живых организмов подвижные алюминий и марганец, поэтому дозы извести должны нейтрализовать не только актуальную, но и обменную формы кислотности известкуемых почв. Обменная кислотность (рНС0Л) — важный показатель нуждаемости почв в известковании. Величину обменной кислотности выражают в рН солевой выяжки (1 н. КС1) или в миллиграмм-эквивалентах на 100 г почвы. При обработке почвы раствором нейтральной соли в почвенной суспензии или растворе наряду с имевшимися ранее (обусловливающими актуальную кислотность) появляются и вытесненные из ППК (обусловливающие обменную кислотность) катионы, поэтому величина обменной кислотности всегда больше (а рН меньше), чем актуальной.

Гидролитическая кислотность обусловлена той частью катионов ППК потенциальной кислотности, которые могут быть вытеснены при обработке почвы 1 н. раствором гидролитически щелочной соли (CH3COONa): CH3COONa + Н2О <=СН3СООН + Na+ + ОН-. Щелочная реакция водного раствора этой соли позволяет более полно, чем нейтральная соль (КС1), вытеснить из ППК все ионы водорода, алюминия, железа и марганца по следующей схеме:

Гидролитическая кислотность (Нг) определяется как общая кислотность почвы, включающая в себя актуальную, обменную и «собственно» гидролитическую виды ее. Она значительно больше обменной и выражается в миллиграмм-эквивалентах на 100 грамм почвы. В отсутствие актуальной и обменной видов «собственно» гидролитическая кислотность не вредна для растений и микроорганизмов. Это наблюдается во всех черноземах, кроме южных, но знание ее в этих случаях необходимо для определения степени насыщенности почв основаниями (V) и для обоснования возможностей замены суперфосфатов фосфоритной мукой (фосфоритование). Для кислых почв (болотные, подзолы, дерново-подзолистые, серые лесные, красноземы, желтоземы) наряду с определением степени насыщенности основаниями и возможностями фосфоритования величина гидролитической кислотности позволяет определять оптимальную дозу извести для желаемой нейтрализации тех или иных видов кислотности. В щелочных почвах (южные черноземы, каштановые и солонцовые почвы) различают актуальную и потенциальную щелочность.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх