Дачники

Статьи о выращивании растений и уходе за животными

Растения в космосе

Всезнайка в Одноклассниках — ответы: Космос

Всезнайка — ответы на игру в Одноклассниках: Эпизод «Космос» Уровни 301-330

Игра «Всезнайка»: ответ на Уровень 301
Какая наука изучает звезды, Галактики, звёздное небо?
Игра «Всезнайка»: ответ на Уровень 302
Кто был первым человеком, совершившим полёт в космос?
Игра «Всезнайка»: ответ на Уровень 303
Какая планета вращается в направлении, противоположном Земле?
Игра «Всезнайка»: ответ на Уровень 304
Что является причиной образования кратеров на Луне?
Игра «Всезнайка»: ответ на Уровень 305
Спутник Урана назван именем гepo:ини Шекспира?
Игра «Всезнайка»: ответ на Уровень 306
На флаге Аляски изображено созвездие …?
Игра «Всезнайка»: ответ на Уровень 307
Какая территория обязана своим названием созвездию Большой Медведицы?
Игра «Всезнайка»: ответ на Уровень 308
Какую планету Солнечной системы недавно отнесли в Kap;лиkовые планеты?
Игра «Всезнайка»: ответ на Уровень 309
Самая яркая звезда в созвездии Тельца называется?
Игра «Всезнайка»: ответ на Уровень 310
Имя учёного, который изобрёл телескоп?
Игра «Всезнайка»: ответ на Уровень 311
Какую планету называют Утренней и Вечерней Звездой?
Игра «Всезнайка»: ответ на Уровень 312
В названии какой планеты спряталась нота?
Игра «Всезнайка»: ответ на Уровень 313
Как называется ближайшая к Солнцу планета?
Игра «Всезнайка»: ответ на Уровень 314
Спутником какой планеты является Каллисто?
Игра «Всезнайка»: ответ на Уровень 315
В какой галактике находится Земля?
Игра «Всезнайка»: ответ на Уровень 316
Звезды какого цвета не существует?
Игра «Всезнайка»: ответ на Уровень 317
Во что превращается звезда при своем погибании?
Игра «Всезнайка»: ответ на Уровень 318
Какая из планет не является газовым гигантом — Юпитер, Сатурн, Марс?
Игра «Всезнайка»: ответ на Уровень 319
Спутником какой планеты является Титан?
Игра «Всезнайка»: ответ на Уровень 320
Первым овощем, выращенным в космосе, стал …?
Игра «Всезнайка»: ответ на Уровень 321
Какой астроном открыл планету Уран?
Игра «Всезнайка»: ответ на Уровень 322
Какая из планет была названа в честь древнеримского бога соответствующего Аресу (Богу войны)?
Игра «Всезнайка»: ответ на Уровень 323
Что такое Уранометрия?
Игра «Всезнайка»: ответ на Уровень 324
Какое созвездие названо в честь охотника из древнeг pеческой мифологии?
Игра «Всезнайка»: ответ на Уровень 325
<В каком году был запущен первый искусственный спутник Земли?
Игра «Всезнайка»: ответ на Уровень 326
Как называется космический объект, излучающий быстрые импульсы радиоволн?
Игра «Всезнайка»: ответ на Уровень 327
Какой космонавт первым совершил выход в открытый космос?
Игра «Всезнайка»: ответ на Уровень 328
К какому классу планет относится Уран?
Игра «Всезнайка»: ответ на Уровень 329
Какую форму имел спускаемый аппарат космического корабля «Восток»?
Игра «Всезнайка»: ответ на Уровень 330
Согласно Египетской мифологии кто являлся солнечным божеством?

Как растения растут в состоянии невесомости?

Гравитация неотъемлема для всех организмов на Земле. Она влияет на каждый аспект нашей физиологии, поведения и развития — независимо от того, что вы такое, вы развиваетесь в среде, которая тесно уходит гравитационными корнями в землю. Но что произойдет, если вы откажетесь от привычной среды и окажетесь в ситуации за пределами эволюционного опыта? Биологи, выращивающие растения в лаборатории, частенько задаются таким вопросом. Эксперименты начинаются на земле, но постепенно переходят в космос. Что может быть новее для растения, чем условия микрогравитации в космосе?

Изучая, как растения реагируют на жизнь в космосе, мы можем узнать больше о том, как они приспосабливаются к изменениям окружающей среды. Растения не только имеют важное значение для земной жизни; они также могут быть важными для нашего освоения Вселенной. Пока мы готовимся к будущей колонизации, нам важно понять, как наши растения могут приспособиться к жизни на других планетах, ведь именно они могут стать неизменным источником еды, воды и воздуха для будущих колонистов.

Таким образом, даже пока мы находимся на земле, на борту той же Международной космической станции исследования идут полным ходом. Они уже преподнесли нам несколько сюрпризов на тему роста в условиях микрогравитации и изменили наше мышление о росте растений на Земле.

Учиться безмятежности растений

Растения хорошо подходят для изучения экологической напряженности. Поскольку они торчат в одном месте — биологи называют такие организмы сессильными, — растениям приходится с умом подходить ко всему, что окружающая среда им преподносит. Переехать в более удачное место не получится, изменить окружающую среду тоже.

Однако растения могут изменить «внутреннюю среду», и растения — мастера по манипуляциям со своим метаболизмом, который помогает им справиться с пертурбациями окружения. По этой причине мы и используем растения в своих исследованиях; мы можем рассчитывать на них как на чувствительных репортеров экологических изменений, даже в относительно новых условиях вроде космического полета.

Людям было интересно, как растения реагируют на космический полет, ровно с того момента, как у нас появилась возможность туда отправиться.

Пока на Земле изучают растения, сами растения находятся в космосе

Космический полет требует специальных камер для роста, специальных инструментов для наблюдения и сбора образцов и, конечно, специальных людей, которые позаботятся о проведении эксперимента на орбите.

Типичный эксперимент начинается на Земле в лаборатории с высадки спящих семян арабидопсиса в чашках Петри с питательным гелем. Этот гель (в отличие от почвы) держится на месте в невесомости и предоставляет растению необходимую воду и питательные вещества. Эти растения затем оборачиваются темной тканью, доставляются в космический центр Кеннеди и загружаются в капсулу Dragon на вершине ракеты Falcon 9, которая летит на МКС.

После стыковки астронавт загружает чашки в оборудование для выращивания растений. Свет стимулирует семена раскрыться, камеры постоянно записывают процесс всхода ростков, и в конце эксперимента астронавт собирает 12-дневные растения и сохраняет их в консервационных тубах.

По возвращении на Землю мы можем сколько угодно экспериментировать с сохраненными образцами, изучать их уникальные процессы метаболизма, которые протекали на орбите.

Собирая плоды

Одно из первых, что мы обнаружили, так это то, что некоторые стратегии роста корней, которые, как мы полагали, требуют гравитацию, не требуют ее вообще. В поиске воды и питательных веществ растения отращивают корни, отправляя их в места поблизости. На Земле гравитация является важным «указателем» направления роста, но растения также используют прикосновения (представьте кончик корня как чувствительный палец) для навигации вокруг препятствий.

В 1880 году Чарльз Дарвин показал, что когда вы выращиваете растения вдоль наклонной поверхности, корни растут из семян не прямо, а скорее отклоняются в одну сторону. Эта стратегия роста называется «перекосом». Дарвин предположил, что причина тому — сочетание гравитации и касания корней — и 130 лет все остальные тоже так считали.

Но корни выросли с перекосом и без гравитации. В 2010 году мы увидели, что корни растений, выращенных на МКС, преодолели весь путь по поверхности чашки Петри с идеальным перекосом корней — без какой-либо гравитации. Это было сюрпризом. Очевидно, не гравитация стоит за паттерном роста корней.

У растений на МКС есть второй потенциальный источник информации, от которого они могли отталкиваться: свет. Мы предположили, в отсутствие силы тяжести, которая могла бы указать корням расти в направлении «прочь» от листьев, свет играет большую роль в ориентации корней.

Выяснилось, что да, свет очень важен, но не только свет — должен быть градиент интенсивности света, тогда он будет выступать в качестве ценного руководства. Представьте его как хороший запах: вы можете с закрытыми глазами найти на кухне источник запаха, если духовка с печеньем только открылась, но если весь дом будет в равной степени утоплен в аромате шоколадного печенья, вы вряд ли его найдете.

Настройка метаболизма на лету

Светящиеся растения позволяют нам узнать, какие гены активны, поэтому мы можем сказать, какие белки производятся.

Мы нашли ряд генов, вовлеченных в производство и реконструкцию клеточных стенок, которые по-другому экспрессируются у выращенных в космосе растений. Другие гены, чувствительные к свету, — которые обычно экспрессируются в листьях на Земле — экспрессировались в корнях на МКС. В листьях оказались репрессированы многие гены сигнализации фитогормона, а гены, отвечающие за защиту от насекомых, оказались более активными. Эти схемы генов и белков кое о чем сообщают: в условиях микрогравитации растения ослабляют клеточные стенки и вырабатывают новые способы чувствовать окружение.

Мы отслеживаем изменения экспрессии генов в режиме реального времени, отмечая конкретные белки флуоресцентной меткой. Растения с добавлением светящихся флуоресцентных белков могут «рассказывать» о том, как реагируют на свое окружение. Такие инженерские растения выступают как биологический сенсор — «биосенсор», если коротко. Специальные камеры и микроскопы позволяют нам наблюдать за тем, какое применение растение находит этим флуоресцентным белкам.

Взгляд из космоса

Такого рода исследование дает нам новое понимание того, как растение воспринимает и реагирует на внешние раздражители на фундаментальном, молекулярном уровне. Чем больше мы узнаем о том, как растение реагирует на новые и экстремальные условия, тем больше мы знаем о том, как растение будет реагировать на изменение условий и здесь, на Земле.

Конечно же, наши исследования в этой области вносят вклад в коллективные усилия по выведению биологии за пределы планеты. Тот факт, что гравитация не так важна для растений, как мы когда-то считали, это приятная новость для перспектив разведения культур на других планетах с низкой гравитацией и даже на кораблях вообще без гравитации. Люди готовы покинуть планету, и когда мы покинем орбиту Земли, будьте уверены, с нами будут растения.

Растения в космосе: инструкция по применению

Смогут ли земляне когда-нибудь засеивать поля на других планетах? Чтобы можно было вслед за космонавтами и мечтателями пропеть, что «и на Марсе будут яблони цвести»? Возможно, совсем скоро мы ответим на этот вопрос. А пока — давайте поговорим о некоторых конкретных космических исследованиях, которые ставили своей целью изучение поведения растений в условиях гравитации.

Наверное, у многих возник вопрос: неужели у растений тоже есть поведение? Разве это свойство живых существ не является прерогативой представителей исключительно животного мира? Оказывается — нет! Представьте себе, у растений тоже есть свои «фишки», в том числе: чувствительность к внешним раздражителям, разные рецепторные процессы, специфические реакции на свет, температуру, силу тяжести. И — что очень любопытно — растения обладают удивительной способностью определять свое положение в пространстве. Вот об этом удивительном феномене растительного мира я и предлагаю поговорить.

Гравитация: маленький шаг для растения и огромный скачок для ученого

Гравитация, как известно многим, — это не только название известного фильма, но и универсальное взаимодействие между материальными телами. Причем неважно, говорим ли мы о неодушевленных предметах или живых существах, о растениях или животных. Именно гравитация необычайно важна для нормального развития растительных организмов, поскольку помогает им правильно «оценивать» свое положение в пространстве. А в случае необходимости — вносить особые поправки за счет поляризованного роста.

Естественной ответной реакцией растительного организма на действие силы тяжести является гравитропизм — направленный рост органов относительно вектора гравитации. Растения тянут свои стебли и стволы ввысь, против вектора силы тяжести, то есть обладают отрицательным гравитропизмом, а их корни устремляются вглубь, к центру планеты (в этом случае мы говорим о положительном гравитропизме). Можно, конечно, дополнить, что сила тяжести не действует на растения в одиночку, сама по себе, а работает в сочетании с другими внешними факторами, как, например, свет или вода — и в этом случае мы говорим о фототропизме или гидротропизме. Но это уже детали…

Давайте же разберемся с вопросом: а зачем все-таки растениям определять свое положение в пространстве, знать, где верх, а где низ? Ведь это не люди, которым действительно нужно как-то передвигаться, причем именно по земле, а не по воздуху, например. На самом деле всё очень просто: сверху находится солнце, которое не только дарит всем живым существам свет и радость, но и обеспечивает растение такой жизненно необходимой солнечной энергией, без которой невообразимы процессы фотосинтеза . Вот почему побеги всегда тянутся ввысь, к теплым лучам, а цветочки могут поворачиваться вслед за солнцем.

А что же происходит внизу? Во-первых, гораздо удобнее удерживать свое положение в пространстве за счет закрепления в грунте, а не в воздухе или в водоеме. А во-вторых, не будем забывать о том, что под ногами у нас почва — уникальнейшая питательная среда со множеством полезных соединений, минеральных солей, ну и, конечно же, с водой. А вода, как известно, источник жизни. Поэтому корни растений устремляются вниз — в поисках необходимой им воды с растворенными в ней веществами.

Вот мы и разобрались с таким известным проявлением гравитропизма, как тенденция к росту побегов растения вверх, а корней — вниз. Однако существует и другой вид гравитропизма, пусть менее известный, но зато знаковый и интересный для исследователей. Я говорю о формировании особых изгибов органов растения в ответ на изменение его ориентации в пространстве, которые называются гравитропическими изгибами. Что же это за изгибы такие? Посмотрим!

Группой Григория Пожванова из Санкт-Петербургского государственного университета была проведена серия экспериментов с арабидопсисом (Arabidopsis thaliana, или резуховидка Таля). Собственно говоря, это растение никому не нужно, кроме ученых, которые используют его в качестве модельного объекта, что позволяет порой получать чрезвычайно интересные результаты. Так вот, этот самый арабидопсис, нескольких дней от роду, с уже сформированным корешком и раскрывшимися листочками, выращенный в специальных емкостях с прозрачной средой (чтобы легче было следить за особенностями роста), переворачивали горизонтально (рис. 1). То есть растение оказывалось лежащим «на боку».

Выяснилось, что бедный опрокинутый арабидопсис (на котором, кстати говоря, и не такие опыты ставили) уже через 6–7 часов изменял направление роста корня и побега таким образом, чтобы корешок вновь начинал расти вниз, а побег всё так же устремлялся вверх. Удивительно, не правда ли? Именно такое «перевернутое» положение с направленными вниз и вверх векторами роста и называют гравитропическим изгибом, призванным восстановить вертикальный рост побегов и корней.

Космический успех арабидопсиса

За последние несколько лет опубликованы сотни научных статей, касающихся проблемы гравитропизма растений. Однако оставался открытым вопрос о влиянии силы притяжения Земли на два важных показателя корневой системы: ее завивание и отклонение.

Так называемое завивание корней — это всего лишь смена направления роста их кончиков, которая происходит, например, при встрече корня с препятствием в виде камня или твердой породы, сквозь которую нельзя прорасти. Происходит своеобразная смена курса роста, связанная с огибанием преграды, но после преодоления этой сложности корешок вновь устремляется вниз согласно вектору силы тяжести.

В свою очередь, отклонение — это процесс углового смещения корня, которое происходит, допустим, при ветвлении. Любой, кто хоть раз пропалывал грядки, может подтвердить, у выкопанных сорняков нет идеально прямых корней. Напротив, они сильно ветвятся, стараясь задержаться в почве прочнее и буквально пробивая себе путь в нижних твердых слоях земли (наверное, поэтому их и не любят — кому понравится битый час выдергивать намертво закрепившегося огородного нелегала).

Некоторое время назад ученые были уверены, что завивание и отклонение имеют в своей основе сходные сценарии развития. Однако такое убеждение дало трещину, когда исследователи из университета Флориды запустили наш любимый арабидопсис в космос. На орбите выключается действие силы притяжения, что дает простор для новых исследований, включая наблюдение за гравитационными процессами. Емкости с растениями находились в специальной установке с камерой, которая делала снимки каждые шесть часов на протяжении первых 15 дней роста растений. Полученные данные передавались с борта космической станции на Землю в Центр космических исследований (Kennedy Space Center), где одновременно проводились аналогичные эксперименты с такими же образцами, но уже в условиях нормальной земной гравитации.

Выяснилось, что в целом и на Земле, и в условиях невесомости арабидопсис успешно рос, просто образцы несколько отличались по своему внешнему виду за счет того, что в основе роста находились разные стимулы. Так, космические образцы при отсутствии вектора гравитации определяли направление для дальнейшего роста по падающему свету (фототропизм). Получается, что корни резуховидок Таля росли в противоположную от побегов сторону, то есть туда, где меньше света, который в этих условиях стал для них определяющим фактором. Но главное — арабидопсис действительно успешно рос даже при отсутствии земного притяжения . Вывод: для завивания и отклонения корней гравитация не является основополагающим фактором. Также было отмечено, что если характер завивания для земных (контрольных) образцов и выросших в космосе растений примерно одинаков, то в случае отклонения можно говорить о разных механизмах данного процесса, поскольку для проростков, выращенных в невесомости, отклонение было гораздо выше (рис. 2).

Рисунок 2. Растения арабидопсиса, выращенные в условиях Земли (А) и на борту космической станции (В). Заметно несколько бóльшее отклонение корней «космических» проростков, но в остальном растения очень похожи. Рисунок с сайта cdn1.vesti.ru.

Кстати говоря, арабидопсис — самое первое растение, которое не только проявило себя в опытах по влиянию отсутствия гравитации на рост, но и прошло полный цикл развития в космосе, успешно перенеся воздействие всех неблагоприятных внеземных условий.

Фитогормоны: растения тоже чувствуют!

Рисунок 3. Корневой статоцит в вертикальном положении. А — проксимальная часть клетки (расположенная ближе к центру). В — дистальная часть клетки (периферическая). 1 — клеточная стенка, 2 — эндоплазматический ретикулум, 3 — плазмодесма, 4 — ядро, 5 — митохондрия, 6 — цитоплазма, 7 — статолит, 8 — корень, 9 — корневой чехлик, 10 — статоцит. Рисунок из «Википедии».

Давайте задумаемся над вопросом: как же растения понимают, где у них низ, а где верх? Человек, например, в любой момент времени может определить, стоит ли он на земле или лежит беспомощный (за эту способность определять свое место в пространстве можно сказать спасибо вестибулярному аппарату). А обездвиженным и безмолвным растениям приходится изощряться другими способами.

Так, у представителей растительного царства есть специальная группа клеток-статоцитов, которые содержат специфические тяжелые структуры, быстро оседающие под действием гравитации (рис. 3). Эти образования называются статолитами.

Допустим, растение пригнулось к земле — отлично, в игру вступают статолиты, которые «падают» вниз (то есть осаждаются) под воздействием силы тяжести. В итоге формируются новые низ (там, где статолиты) и верх (где их нет). Далее запускается целый каскад реакций, призванных преобразовать физический процесс осаждения статолитов в биохимические процессы, которые в итоге ведут к гравитропическому ответу. Это явление очень сложно и до конца не изучено; можно с определенностью сказать лишь то, что в нем задействуется целая сеть различных посредников, вторичных мессенджеров и, конечно же, фитогормонов. Да-да, представьте себе, у растений тоже есть свои гормоны — пусть не такие популярные в плане исследований, как гормоны животных, но всё же не менее интересные и важные. Эти вещества способны оказывать целый спектр биологических воздействий. Но я предлагаю поговорить об ауксине (он же — индол-3-уксусная кислота, ИУК) как о важном участнике гравитропической реакции .

Так, при «перевороте» растения происходит накопление ИУК на нижней стороне гравистимулированного органа (как растение определяет свой верх и низ, мы уже обсуждали выше). Это приводит к различной скорости роста клеток на противоположных сторонах побега и корня. Получается, что ауксин — это определяющий фактор формирования гравитропического изгиба. Однако было бы несправедливо оставить в стороне помощников ауксина — специальные PIN-белки (от англ. pin — булавка), которые транспортируют его к месту воздействия . Таких белков-переносчиков в клетке очень много, их классификация довольно сложна, но суть заключается в том, что именно от типа и количества этих белков зависит, куда пойдет ауксин. Получается, что если PIN-белков много на нижней стороне корня, то там будет и ауксин, чтобы простимулировать его рост.

И наконец мы подходим к такому интересному моменту, как распределение PIN-белков в пространстве клетки. Ведь сами белки, хоть и называются переносчиками, лишены возможности произвольного перемещения. Их распределение регулируется цитоскелетом. У клеток растений тоже есть свой скелет, и представлен он не костями и хрящами, а специальными веществами: актином, тубулином и миозином. Важно, что именно эти структурные полимеры определяют подвижность большинства компонентов клетки. Актиновый цитоскелет — это словно раскинувшаяся по всему объему клетки огромная сеть дорог, по которой обеспечивается транспорт большинства соединений .

А еще — актиновый цитоскелет очень сложно увидеть: для этого было бы недостаточно даже применения очень сильного микроскопа. Дело даже не в чрезвычайно малых размерах данной структуры, а в визуализации* — ведь человеческий глаз не способен различать эти тонкие ниточки, из которых состоят микрофиламенты, даже при очень большом увеличении. И здесь нам на помощь приходят трансгенные растения . Уверена, что многие из вас так или иначе слышали о них, причем большей частью плохое. На самом же деле трансгенные растения — это универсальный инструментарий биолога, без которого нельзя представить работу любой современной физиологической лаборатории.

* — Как преодолеть дифракционный барьер и различить детали размером меньше полудлины волны мы писали в статье «Лучше один раз увидеть, или микроскопия сверхвысокого разрешения» , а о лауреатах Нобелевской премии за разработку методов сверхразрешающей микроскопии — в материале «По ту сторону дифракционного барьера: Нобелевская премия по химии 2014» . В сообщении «Экспансионная микроскопия, или Как увидеть новое сквозь старую линзу» описан новый метод приготовления микропрепаратов, который позволяет существенно улучшить разрешение . — Ред.

Итак, «трансгены» — это те же самые растения (в нашем случае — арабидопсис), просто снабженные специальными белками для создания новой экспериментальной модели. Получается, мы берем резуховидку Таля и внедряем в ее ДНК ген зеленого флуоресцентного белка (GFP, green fluorescent protein). А затем исследуем трансформированное растение под особым конфокальным микроскопом, подсвечивая лазером. И, как говорится, voila — получаем на выходе цифровое изображение, на котором прекрасно видны внутренние структуры, в частности актиновый цитоскелет, который и был нам нужен (рис. 4) .

* — Значимость GFP для биологических экспериментов оказалась настолько высока, что за открытие этого маркера вручили Нобелевскую премию: «Флуоресцирующая Нобелевская премия по химии» . Однако ученые не удовлетворились и явили миру новые поколения флуоресцентных белков: «Флуоресцентные белки: разнообразнее, чем вы думали!» . — Ред.

Рисунок 4. Так выглядит актиновый цитоскелет корня, если подсветить его лазером конфокального микроскопа. Яркие тонкие нити — микрофиламенты, границы клеток светятся менее ярко. Масштабная линейка равна 50 мкм. Фото автора.

Новые направления: что же будет дальше?

Возможно, кого-то заинтересует, зачем нужны подобные исследования с использованием конфокальной микроскопии и где они выполняются? Поведение растений в космосе — глобальная тема исследований, над которой работают многие научные умы. Однако я могу назвать конкретное место, где тоже происходит активнейшее изучение процессов гравитропизма, — это кафедра физиологии и биохимии растений Санкт-Петербургского государственного университета. Именно здесь были сделаны конкретные экспериментальные заключения, о которых и пойдет речь ниже. В том числе по той причине, что я — студентка этой кафедры и работаю над магистерской диссертацией (за помощь хочется поблагодарить Ресурсный центр «Развитие молекулярных и клеточных технологий» СПбГУ, а особенно — их замечательный конфокальный микроскоп Leica TCS SPE).

А теперь, познакомившись с основным инструментарием, обратимся непосредственно к результатам проведенных экспериментов. Фундаментальной проблемой, интересовавшей нас в ходе работы, было поведение растений в космосе, и для ее решения мы проводили опыты по гравистимуляции растительных образцов с дальнейшей визуализацией актинового цитоскелета. Была поставлена задача сравнить корни контрольных (вертикально растущих) и гравистимулированных (расположенных горизонтально) растений арабидопсиса, а также исследовать действие на них различных реагентов.

Выяснилось, что в нормально (вертикально) развивающихся растениях находится очень много аксиально ориентированных микрофиламентов — то есть тех, которые сонаправлены с вектором силы тяжести. А вот в случае гравистимуляции, когда арабидопсис оказывается лежащим на боку, происходят изменения — в частности, увеличивается доля тех актиновых нитей, которые расположены наклонно или перпендикулярно поверхности Земли. Это значит, что корень действительно узнает, что низ и верх теперь не там, где были раньше, и уже через 20–30 минут после этой «смены полюсов» начинает активно подстраиваться под новые условия за счет переориентации своего цитоскелета. Данные механизмы лежат в основе формирования гравитропического изгиба — структуры, которую мы так долго и упорно обсуждали.

Еще более интересные результаты были получены в случае действия на такие же растения разнообразных реагентов (рис. 5). Известно, что при стрессе (например, во время гравистимуляции) в клетках растений начинает синтезироваться гормон стресса — этилен, который подавляет процессы роста корней и развитие побега, но не препятствует гравитропической реакции. При дополнительной обработке корней арабидопсиса раствором этефона (из которого образуется этилен) обнаруживалась почти тотальная разборка цитоскелета, и чем дольше растение подвергалось такому воздействию, тем больше разрушались актиновые микрофиламенты. Гравитропический изгиб образовывался, но корень был значительно короче.

Салициловая кислота ускоряла реорганизацию цитоскелета и в целом угнетала гравитропическую реакцию за счет подавления синтеза этилена. То есть корни растения не воспринимали переворот на 90 градусов в качестве стресса: ведь этилен, призванный сигнализировать о стрессовых изменениях, не выделялся. Однако по прошествии часа действие салицилата ослабевало, и растение, ощутив стресс, могло формировать изгиб.

А вот при удалении Cа2+ из клеточных стенок с помощью раствора EGTA (которая способствует связыванию ионов кальция) образование гравитропического изгиба полностью ингибировалось.

Подводя итог, можно сказать, что все эти вещества оказывают свои собственные эффекты на рост растения, причем способны как подавлять стресс, так и усиливать действие гравистимуляции.

Рисунок 5. Растения, которые подверглись различным воздействиям. В верхней строчке — нормальное (вертикальное) положение корней, в нижней — гравистимулированные (перевернутые) корни. В случае EGTA использовали два красителя: циановым цветом показан актиновый цитоскелет, а цветом фуксии — ядра клеток. Фото автора.

Варианты вертикального и горизонтального (в случае поворота растения на 90 градусов по часовой стрелке) роста арабидопсиса в течение 12 часов. Col-0 — дикий тип, GFP-fABD2 — растения Col-0, трансформированные конструкцией GFP-fABD2. В случае гравистимулированных образцов (справа) наблюдается формирование гравитропического изгиба под влиянием изменения вектора гравитации. Стрелкой показаны кончики корней, клетки которых служили объектом для исследования актинового цитоскелета.

На самом деле, это исследование только начинается. Нам еще предстоят новые эксперименты, связанные с обработкой резуховидок Таля различными активаторами и ингибиторами роста, регуляторами транспорта ауксина. К слову, оформленных научных статей еще нет: ведь работа не прекращается, буквально каждую неделю можно говорить о новых результатах.

Думаю, может возникнуть вопрос: зачем вообще нужны эти эксперименты? Чтобы лучше разобраться в механизмах стрессовой реакции в условиях смены вектора гравитации. Это поможет лучше понять, что именно испытывают растения в условиях невесомости.

Когда будет жизнь на Марсе?

Идея запланированного полета людей на Марс с целью создания там колонии не нова, однако споры вокруг этого вопроса начались с того самого момента, как идея впервые была высказана. Скептиков и тогда, и сейчас находится очень и очень много.

В одной из недавно опубликованных статей утверждается, что с некоторой долей вероятности марсианский корабль может стать кораблем-призраком, если на Солнце во время полета произойдет незапланированная вспышка . Доза радиации при этом возрастет на порядок и легко убьет экипаж.

Рисунок 6. Официальная эмблема международного космического проекта Mars One. Рисунок с сайта eggheado.com.

Однако технологии постоянно развиваются — пусть медленно, если речь идет о межпланетных путешествиях, но всё же… Уже созданы проекты космических кораблей с уникальной защитной экранирующей поверхностью, способной обеспечить надежную защиту на весь срок полета, а потому проблему радиации можно считать теоретически решенной.

В той же статье автор высказыват мнение о том, что человек в принципе не способен долгое время существовать и работать рядом с одними и теми же людьми. Космонавты в один прекрасный день могут поубивать друг друга просто из-за того, что кто-то кому-то наступит на ногу. А всему виною стресс, особенно от того, что в «мышеловке» марсолёта помощи ждать неоткуда и спасательных капсул для побега на Землю не предусмотрено.

Стресс убивает, это правда. Но давайте заглянем на страничку проекта Mars One (рис. 6), в раздел «Отбор кандидатов» — и мы увидим, что способность справляться со сложными и конфликтными ситуациями (так называемая стрессоустойчивость) является, пожалуй, основным критерием отбора будущих астронавтов. К тому же участники проекта — это люди, которые сами захотели кардинально изменить свою жизнь, в отличие от профессиональных космонавтов, которым ставят конкретные задачи, часто не считаясь с их личным мнением.

Во всяком случае, время для колонизации Марса пока еще не настало, и впереди у нас как минимум десять лет. Ну а кандидатам, уже выбранным по конкурсу для участия в проекте, предстоят длительные тренинги и тщательное обучение на Земле. Что из этого получится — увидим!

Возвращаясь к результатам наших сугубо лабораторных экспериментов, следует сказать, что они имеют важное значение именно для фундаментальной науки. Однако хочется надеяться, что когда-нибудь именно эти исследования лягут в основу проектов по выращиванию свежих овощей и фруктов на космических кораблях или даже на других планетах (напомню, что пока лишь единичные экспериментальные образцы пшеницы и салата смогли пройти полный цикл вегетации в космических условиях). Интерес к внеземным пространствам сопровождал развитие цивилизации, хоть под этим пространством и подразумевалось совершенно разное. Сейчас же для удовлетворения своего интереса человечество способно разрабатывать конкретные планы, моделировать условия, чтобы потом согласно расчетам и результатам экспериментов «расстелить соломку» везде, где только можно. Глядишь, и зацветет марсианский сад?..

Международная космическая программа Mars One уже достаточно обсуждалась в прессе. Набор кандидатов, решивших приобрести билет в один конец, завершен. Теперь руководителям проекта предстоит колоссальная задача по подготовке всех необходимых условий, чтобы облегчить начало колонизации Красной планеты (рис. 7). Колонисты ставят масштабные задачи по преобразованию Марса: предполагается растопить там лед, вызвать парниковый эффект и, когда стабилизируется круговорот воды, засеять планету растениями. А пока что мы просто изучаем поведение растительных организмов в надежде на успешное освоение новых космических пространств.

Рисунок 7. Одна из основных задач научной экспедиции — изучить влияние Марса на растения, а затем и на собственные тела. Рисунок с сайта eggheado.com.

Кто знает — быть может, наступят и для нас такие времена, когда межпланетные путешествия станут обыденностью, а космос превратится в родную стихию? Ну а наш любимый арабидопсис заслужит свое почетное место в анналах земной науки и продолжит свою скромную, но такую важную работу в качестве универсального научного образца…

Литература

  1. Волонтер фотосинтеза;
  2. Загорская Д. (2012). Ученые исследовали рост растений в отсутствие гравитации. Сайт «Вести.ру»;
  3. Пожванов Г.А., Суслов Д.В., Медведев С.С. (2013). Перестройки актинового цитоскелета в ходе гравитропической реакции корней арабидопсиса. Цитология. 55, 28–35;
  4. Коврижных В.В., Омельянчук Н.А., Пастернак Т.П., Миронова В.В. (2014). Ключевая роль PIN-белков в транспорте ауксина в корне Arabidopsis thaliana L. Вавиловский журнал генетики и селекции. 18, 797–806;
  5. Kandasamy M.K., Deal R.B., McKinney E.C. (2004). Plant actin-related proteins. Trends Plant Sci. 9, 196–202;
  6. Трансгенные растения — спасители планеты или бомбы замедленного действия?;
  7. Лучше один раз увидеть, или Микроскопия сверхвысокого разрешения;
  8. По ту сторону дифракционного барьера: Нобелевская премия по химии 2014;
  9. Экспансионная микроскопия, или Как увидеть новое сквозь старую линзу;
  10. Флуоресцирующая Нобелевская премия по химии;
  11. Флуоресцентные белки: разнообразнее, чем вы думали!;
  12. Паевский А. (2015). Замечтались. Научно-образовательный проект ТАСС «Чердак»..

Несоответствие условий среды потребностям растений отрицательно сказывается на их росте и развитии, а так же может вызывать их гибель и наоборот. Условия произрастания растений определяются наличием факторов жизни. Они делятся на 2 группы:

а) космические (свет, тепло);

б) земные (воздух, вода, питательные вещества).

Значение факторов:

1. Основным источником света является солнечная радиация. Свет обеспечивает культурным растениям необходимую энергию, которую они используют в процессе фотосинтеза для образования органического вещества. Поступление света практически невозможно регулировать, но его использование можно регулировать путем применения дифференцированных норм высева, способов посева, направления рядков, а так же прореживания растений и уничтожения сорняков.

2. Тепло является одним из основных факторов жизни растений и оказывает существенное влияние на биологические, химические и физические процессы происходящие в растениях и почве. Все процессы, протекающие в растениях, начиная с прорастания семян и заканчивая уборкой могут протекать только при определенной температуре. Тепло оказывает влияние на биологическую активность почвы, жизнедеятельность почвенной микрофлоры.

3. Вода является также основным фактором жизни растений. Потребность растений в воде проявляется с первых дней развития. Влага необходима для прорастания семян и дальнейшего их развития. Живые растительные клетки на 80-90 и более % состоят из воды. Вода оказывает также влияние на свойства почвы: воздушный, тепловой и питательный режимы, деятельность микроорганизмов, качество проведения полевых работ.

4. Воздух – атмосферный и почвенный – необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода для фотосинтеза.

5. Питательные вещества. Органическое вещество зеленые растения создают из углекислого газа атмосферы, воды и минеральных солей почвы при наличии энергии солнца. 94,5% сухого вещества приходится на долю О2, С, Н2 и N2, и только 5,5% на долю зольных элементов, без наличия которых жизнедеятельность растений невозможна.

Резуховидка (Arabidopsis)

В науке

Резуховидка Таля, названная в честь немецкого ботаника и врача Иоганна Таля, является уникальным представителем не только своего рода, но и всего царства растений. Из-за очень короткого цикла развития этот вид стал использоваться генетиками как модельный организм (по аналогии с лабораторной мышью в царстве животных). Геном, то есть наследственный материал, резуховидки Таля – один из наименьших, на его примере учёные впервые смогли определить и описать структуру белков и нуклеиновых кислот растения.
С тех пор арабидопсис стал постоянным участником опытов. Так, один из генов резуховидки Таля, отвечающий за концентрацию веществ в растении, был внедрён в обыкновенный томат вместе с генами винограда и бобов, содержащими полезные антиоксиданты. Полученные в результате эксперимента плоды содержали огромное количество генистеина и ресвератрола. Это открытие в будущем позволит выращивать «лекарственные ГМО». Учёные экспериментировали и с химическим составом самого арабидопсиса: они смогли получить резуховидку, содержащую в сухой массе 9% масла. Если использовать эти технологии в больших масштабах, можно будет наладить производство биотоплива из растений.
При помощи других опытов было установлено, что растения обладают определённой памятью. Экземпляр резуховидки Таля, лишённый воды в течение нескольких дней, перенёс пересадку гораздо лучше, чем второй экземпляр, содержавшийся в нормальных условиях. Когда первый арабидопсис снова переставали поливать, он «вспоминал» свою реакцию и ещё быстрее справлялся со стрессом. В ходе другого эксперимента генетики смогли изменить генетический состав растения таким образом, что модифицированная резуховидка стала расти вдвое быстрее, а количество семян увеличилось на 400%. Результаты этих наблюдений могут быть полезны для выведения не только быстрорастущих, но и устойчивых к засухе культур.
Ещё одним важным открытием стало то, что резуховидки Таля способны реагировать на опасность и предупреждать о ней друг друга. После запуска аудиозаписи, имитирующей вибрацию гусеницы, растения начинали вырабатывать ядовитое масло, не реагируя таким же образом на шум ветра и другие «безопасные» звуки. А когда учёные надрезали листья одной из двух резуховидок Таля, она стала выпускать химические вещества, предупреждая второй экземпляр об опасности. Корни второго растения начали быстрее расти и укрепляться.
Таким образом, эксперименты над видом Arabidópsis thaliána могут быть важны не только для генетики, но и для биологии, сельского хозяйства, медицины и многих других областей.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх